Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2568-2579, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170862

RESUMO

High-lying electronic states hold the potential for new and unusual photochemical reactions. However, for conventional single-photon excitation in the condensed phase, reaching these states is often not possible because the vacuum-ultraviolet (VUV) light required is competitively absorbed by the surrounding matrix rather than the molecule of interest. Here, this hurdle is overcome by leveraging nonresonant two-photon absorption (2PA) at 265 nm to achieve preferential photolysis of tetrahydrofuran (THF) trapped within a clathrate hydrate network at 77 K. Electron spin resonance (ESR) spectroscopy enables direct observation and identification of otherwise short-lived organic radicals stabilized by the clathrate cages, providing clues into the rapid dynamics that immediately follow photoexcitation. 2PA induces extensive fragmentation of enclathrated THF yielding 1-alkyl, acyl, allyl and methyl radicals-a stark departure from the reactive motifs commonly reported in γ-irradiated hydrates. We speculate on the undetected transient dynamics and explore the potential role of trapped electrons generated from water and THF. This demonstration of nonresonant two-photon chemistry presents an alternative approach to targeted condensed phase photochemistry in the VUV energy range.

2.
J Am Chem Soc ; 144(37): 17295-17306, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083877

RESUMO

Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.


Assuntos
Peróxidos , Praseodímio , Éteres de Coroa , Ésteres , Etilenoglicóis , Ligantes , Metalocenos , Metais/química , Metanol , Oxirredução , Oxigênio/química , Fosfatos , Substâncias Redutoras
3.
Phys Rev Lett ; 120(20): 206801, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864317

RESUMO

We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...